
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting

doi: 10.3390/en14217378
Short-Term Load Forecasting is critical for reliable power system operation, and the search for enhanced methodologies has been a constant field of investigation, particularly in an increasingly competitive environment where the market operator and its participants need to better inform their decisions. Hence, it is important to continue advancing in terms of forecasting accuracy and consistency. This paper presents a new deep learning-based ensemble methodology for 24 h ahead load forecasting, where an automatic framework is proposed to select the best Box-Jenkins models (ARIMA Forecasters), from a wide-range of combinations. The method is distinct in its parameters but more importantly in considering different batches of historical (training) data, thus benefiting from prediction models focused on recent and longer load trends. Afterwards, these accurate predictions, mainly the linear components of the load time-series, are fed to the ensemble Deep Forward Neural Network. This flexible type of network architecture not only functions as a combiner but also receives additional historical and auxiliary data to further its generalization capabilities. Numerical testing using New England market data validated the proposed ensemble approach with diverse base forecasters, achieving promising results in comparison with other state-of-the-art methods.
- University of Beira Interior Portugal
- Instituto de Telecomunicações Portugal
Technology, correlation analysis, T, ensemble methods, deep learning, ARIMA models; correlation analysis; deep learning; deep neural networks; ensemble methods; ISO New England; load forecasting; short-term load forecasting, ISO New England, ARIMA models, deep neural networks
Technology, correlation analysis, T, ensemble methods, deep learning, ARIMA models; correlation analysis; deep learning; deep neural networks; ensemble methods; ISO New England; load forecasting; short-term load forecasting, ISO New England, ARIMA models, deep neural networks
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
