
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Using Sine Function-Based Nonlinear Feedback to Control Water Tank Level

doi: 10.3390/en14227602
This manuscript addresses the feasibility and significance of using a sine function to modify the system error of a normal linear feedback control to achieve more efficient capabilities in terms of energy-saving. The associated mathematic modeling and assessment were demonstrated by presenting a case analysis on the capabilities of controlling water level for a single tank. The principle of robust control and the theories and detailed algorithm of Lyapunov stability were applied to assess the result derived by novel nonlinear feedback in the form of sine function for optimizing the robustness of the PID (Proportional–Integral–Derivative) controller and economizing energy. Two control simulations are compared: nonlinear feedback control using a sine function and conventional fuzzy control. The results reveal that using the nonlinear feedback controller, a reduction of up to 32.9% of the average controlled quantity is achieved, and the performance index is improved by 24.0% with satisfactory robustness. The proposed nonlinear feedback control using a sine function provides simplicity, convenient implementation, and energy efficiency.
- Dalian Maritime University China (People's Republic of)
- Dalian Maritime University China (People's Republic of)
sine function, Technology, level control, T, nonlinear feedback, robust control
sine function, Technology, level control, T, nonlinear feedback, robust control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
