
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Deep Learning-Based Approach for Generation Expansion Planning Considering Power Plants Lifetime

doi: 10.3390/en14238035
In Generation Expansion Planning (GEP), the power plants lifetime is one of the most important factors which to the best knowledge of the authors, has not been investigated in the literature. In this article, the power plants lifetime effect on GEP is investigated. In addition, the deep learning-based approaches are widely used for time series forecasting. Therefore, a new version of Long short-term memory (LSTM) networks known as Bi-directional LSTM (BLSTM) networks are used in this paper to forecast annual peak load of the power system. For carbon emissions, the cost of carbon is considered as the penalty of pollution in the objective function. The proposed approach is evaluated by a test network and then applied to Iran power system as a large-scale grid. The simulations by GAMS (General Algebraic Modeling System, Washington, DC, USA) software show that due to consideration of lifetime as a constraint, the total cost of the GEP problem decreases by 5.28% and 7.9% for the test system and Iran power system, respectively.
- K.N.Toosi University of Technology Iran (Islamic Republic of)
- Amirkabir University of Technology Iran (Islamic Republic of)
- K.N.Toosi University of Technology Iran (Islamic Republic of)
- Amirkabir University of Technology Iran (Islamic Republic of)
lifetime, Technology, generation expansion planning (GEP), T, deep learning, power system, bidirectional LSTM, planning
lifetime, Technology, generation expansion planning (GEP), T, deep learning, power system, bidirectional LSTM, planning
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
