
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
On the Use of Wearable Face and Neck Cooling Fans to Improve Occupant Thermal Comfort in Warm Indoor Environments

doi: 10.3390/en14238077
On the Use of Wearable Face and Neck Cooling Fans to Improve Occupant Thermal Comfort in Warm Indoor Environments
Face and neck cooling has been found effective in improving thermal comfort during exercise in the heat despite the fact that the surface area of human face and neck regions accounts for only 5.5% of the entire body. Presently very little documented research has been conducted to investigate cooling the face and neck only to improve indoor thermal comfort. In this study, two highly energy efficient wearable face and neck cooling fans were used to improve occupant thermal comfort in two warm indoor conditions (30 and 32 °C). Local skin temperatures and perceptual responses while using the two wearable cooling fans were examined and compared. Results showed that both cooling fans could significantly reduce local skin temperatures at the forehead, face and neck regions by up to 2.1 °C. Local thermal sensation votes at the face and neck were decreased by 0.82–1.21 scale unit at the two studied temperatures. Overall TSVs decreased by 1.03–1.14 and 1.34–1.66 scale units at 30 and 32 °C temperatures, respectively. Both cooling fans could raise the acceptable HVAC temperature setpoint to 32.0 °C, resulting in a 45.7% energy saving over the baseline HVAC setpoint of 24.5 °C. Furthermore, occupants are advised to use the free-control cooling mode when using those two types of wearable cooling fans to improve thermal comfort. Finally, despite some issues on dry eyes and dry lips associated with those wearable cooling fans, it is concluded that those two highly energy-efficient wearable cooling fans could greatly improve thermal comfort and save HVAC energy.
- Xi'an Polytechnic University China (People's Republic of)
- Hubei Normal University China (People's Republic of)
- Xi'an University of Architecture and Technology China (People's Republic of)
- Tianjin Chengjian University China (People's Republic of)
- Xi'an University of Architecture and Technology China (People's Republic of)
Technology, perceptual responses, dry eye symptom, T, neck cooling, energy performance, face cooling, personal thermal management, face cooling; neck cooling; personal thermal management; energy performance; perceptual responses; dry eye symptom
Technology, perceptual responses, dry eye symptom, T, neck cooling, energy performance, face cooling, personal thermal management, face cooling; neck cooling; personal thermal management; energy performance; perceptual responses; dry eye symptom
1 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
