
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Natural Gas Consumption Forecasting Based on the Variability of External Meteorological Factors Using Machine Learning Algorithms

doi: 10.3390/en15010348
Natural gas consumption depends on many factors. Some of them, such as weather conditions or historical demand, can be accurately measured. The authors, based on the collected data, performed the modeling of temporary and future natural gas consumption by municipal consumers in one of the medium-sized cities in Poland. For this purpose, the machine learning algorithms, neural networks and two regression algorithms, MLR and Random Forest were used. Several variants of forecasting the demand for natural gas, with different lengths of the forecast horizon are presented and compared in this research. The results obtained using the MLR, Random Forest, and DNN algorithms show that for the tested input data, the best algorithm for predicting the demand for natural gas is RF. The differences in accuracy of prediction between algorithms were not significant. The research shows the differences in the impact of factors that create the demand for natural gas, as well as the accuracy of the prediction for each algorithm used, for each time horizon.
Technology, natural gas consumption, T, forecasting, neural networks, random forest, natural gas consumption; forecasting; random forest; neural networks
Technology, natural gas consumption, T, forecasting, neural networks, random forest, natural gas consumption; forecasting; random forest; neural networks
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
