
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Smart Sustainable Production and Distribution Network Model for City Multi-Floor Manufacturing Clusters

doi: 10.3390/en15020488
This study focuses on management ways within a city multi-floor manufacturing cluster (MFMC). The application of MFMC in megapolises is closely related to the problem of urban spatial development and the problem of matching transport and logistics services. The operation of the MFMC depends on the efficiency of production and transport management considering technical, economic, end environmental factors. Therefore, conditions affecting decision-making in the field of production planning by MFMCs and accompanying transports within the agglomeration area with the use of the production-service platform were presented. Assumptions were created for the decision model, allowing for the selection of partners within the MFMC to execute the production order. A simplified decision model using the Hungarian algorithm was proposed, which was verified with the use of test data. The model is universal for material flow analysis and is an assessments basis for smart sustainable supply chain decision-making and planning. Despite the narrowing of the scope of the analysis and the simplifications applied, the presented model using the Hungarian algorithm demonstrated its potential to solve the problem of partner selection for the execution of the contract by MFMC.
production and distribution processes planning, Technology, T, simplified decision model, city multi-floor manufacturing, smart supply chain management, city multi-floor manufacturing; production and distribution processes planning; smart supply chain management; Hungarian algorithm; simplified decision model, Hungarian algorithm
production and distribution processes planning, Technology, T, simplified decision model, city multi-floor manufacturing, smart supply chain management, city multi-floor manufacturing; production and distribution processes planning; smart supply chain management; Hungarian algorithm; simplified decision model, Hungarian algorithm
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
