Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
MPG.PuRe
Article . 2022
Data sources: MPG.PuRe
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of NVIDIA Xavier NX Platform for Real-Time Image Processing for Plasma Diagnostics

Authors: Bartłomiej Jabłoński; Dariusz Makowski; Piotr Perek; Patryk Nowak vel Nowakowski; Aleix Puig Sitjes; Marcin Jakubowski; Yu Gao; +2 Authors

Evaluation of NVIDIA Xavier NX Platform for Real-Time Image Processing for Plasma Diagnostics

Abstract

Machine protection is a core task of real-time image diagnostics aiming for steady-state operation in nuclear fusion devices. The paper evaluates the applicability of the newest low-power NVIDIA Jetson Xavier NX platform for image plasma diagnostics. This embedded NVIDIA Tegra System-on-a-Chip (SoC) integrates a Graphics Processing Unit (GPU) and Central Processing Unit (CPU) on a single chip. The hardware differences and features compared to the previous NVIDIA Jetson TX2 are signified. Implemented algorithms detect thermal events in real-time, utilising the high parallelism provided by the embedded General-Purpose computing on Graphics Processing Units (GPGPU). The performance and accuracy are evaluated on the experimental data from the Wendelstein 7-X (W7-X) stellarator. Strike-line and reflection events are primarily investigated, yet benchmarks for overload hotspots, surface layers and visualisation algorithms are also included. Their detection might allow for automating real-time risk evaluation incorporated in the divertor protection system in W7-X. For the first time, the paper demonstrates the feasibility of complex real-time image processing in nuclear fusion applications on low-power embedded devices. Moreover, GPU-accelerated reference processing pipelines yielding higher accuracy compared to the literature results are proposed, and remarkable performance improvement resulting from the upgrade to the Xavier NX platform is attained.

Keywords

embedded system, Technology, general-purpose computing on graphics processing units, plasma diagnostics, T, graphics processing unit, image processing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Energy Research