
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Multi-Objective Optimisation for Large-Scale Offshore Wind Farm Based on Decoupled Groups Operation

doi: 10.3390/en15072336
Multi-Objective Optimisation for Large-Scale Offshore Wind Farm Based on Decoupled Groups Operation
Operation optimization for large-scale offshore wind farms can cause the fatigue loads of single wind turbines to exceed their limits. This study aims to improve the economic profit of offshore wind farms by conducting multi-objective optimization via decoupled group operations of turbines. To do this, a large-scale wind farm is firstly divided into several decoupled subsets through the parallel depth-first search (PDFS) and hyperlink-induced topic search (HITS) algorithms based on the wake-based direction graph. Next, three optimization objectives are considered, including total output power, total fatigue load, and fatigue load dispatch on a single wind turbine (WT) in a wind farm. And then, the combined Monte Carlo and beetle swarm optimization (CMC-BSO) algorithms are applied to solve the multi-objective non-convex optimization problem based on the decentralized communication network topology. Finally, the simulation results demonstrate that the proposed method balances the total power output, fatigue load, and single fatigue loads with fast convergence.
- Kunsan National University Korea (Republic of)
- Jiujiang University China (People's Republic of)
- Kunsan National University Korea (Republic of)
- Pusan National University Korea (Republic of)
- Jiujiang University China (People's Republic of)
fatigue loads, Technology, offshore wind farm, multi-objective optimization; offshore wind farm; CMC-BSO algorithm; fatigue loads, multi-objective optimization, T, CMC-BSO algorithm
fatigue loads, Technology, offshore wind farm, multi-objective optimization; offshore wind farm; CMC-BSO algorithm; fatigue loads, multi-objective optimization, T, CMC-BSO algorithm
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
