
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of Impurities in Electrical Contacts on Increasing the Efficiency of Energy Transmission

doi: 10.3390/en15072339
The aim of this paper is to analyze the heat distribution in the high-current electrical contact under the action of an assumed current of 3000 A using mathematical modeling and simulation. Electrical contacts that carry high currents are an essential component of many electric devices. In transmission and distribution systems, the electrical contacts are of particular importance because they must withstand adverse weather conditions that decrease their effectiveness. Therefore, it is essential to detect any rise in temperature of the electrical contact to ensure efficient and reliable energy transmission. For this paper, simulations of the temperature field in direct electrical contact were carried out in ANSYS and discussed. During the simulation, a high-current electric contact was exposed to 3000 A current and the change of the adverse effects of contaminated contact layers affected temperature field. According to the results, electric contact in good condition (represented by impurity layer of lower resistivity) had a temperature of 80 °C lower than an electric contact that was worn out (represented by impurity layer of higher resistivity). The investigation of the resistivity of contaminated contact layers has led to the determination of permissible values for the power grid operators to maintain these types of devices when temperatures rise.
- Technical University of Košice Slovakia
- Technical University of Košice Slovakia
Technology, T, simulation, ANSYS, high current, temperature field, electrical contact
Technology, T, simulation, ANSYS, high current, temperature field, electrical contact
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
