
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy-Environmental Planning of Electric Vehicles (EVs): A Case Study of the National Energy System of Pakistan

doi: 10.3390/en15093054
Energy-environmental planning for road transportation involves a vast investigation of vehicles’ technologies and electricity production. However, in developing countries where the public transportation sector is growing quickly, energy-environmental planning is urgently needed. This paper evaluates the future electricity demand, as well as fuel consumption and CO2 emissions reduction, due to the operation of an expected increasing number of electric vehicles (EVs) in Pakistan. The planning of EVs up to 2040 is performed with the ePop simulator that calculates the future EVs’ electricity demand, while EnergyPLAN® assesses the expected new power capacities. Two scenarios are investigated by penetrating 30% and 90% of 2/3 electric wheelers and cars by 2030 and 2040 compared to 2020, respectively. To fulfill the expected energy demand, PV in the daytime and the national electric grid at nighttime are here considered. Finally, a 9 GW of PV capacity is needed to satisfy the EVs’ electricity demand of 14.7 TWh/year, and a 0.7 GW power plants capacity is needed to fulfill 4.7 TWh/year by 2040. Consequently, EVs’ charging scenarios at daytime and nighttime are assessed. Results indicated a total reduction of 10.4 Mtonnes of CO2 emissions and 9.1 Mtoe of fuel consumption by 2040 in the transportation sector.
- International Islamic University Pakistan
- International Islamic University Pakistan
- Marche Polytechnic University Italy
Technology, T, EnergyPLAN<sup>®</sup>, renewable energy, CO<sub>2</sub> emissions, ePop simulator, Pakistan, CO<sub>2</sub> emissions; electric vehicles; ePop simulator; EnergyPLAN<sup>®</sup>; Pakistan; renewable energy, electric vehicles
Technology, T, EnergyPLAN<sup>®</sup>, renewable energy, CO<sub>2</sub> emissions, ePop simulator, Pakistan, CO<sub>2</sub> emissions; electric vehicles; ePop simulator; EnergyPLAN<sup>®</sup>; Pakistan; renewable energy, electric vehicles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
