Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Energy-Efficient Start-Up Strategy for Large Variable Speed Hydro Pump Turbine Equipped with Doubly Fed Asynchronous Machine

Authors: Rassiah Raja Singh; Manickavel Baranidharan; Umashankar Subramaniam; Mahajan Sagar Bhaskar; Shriram S. Rangarajan; Hany A. Abdelsalam; Edward Randolph Collins; +1 Authors

An Energy-Efficient Start-Up Strategy for Large Variable Speed Hydro Pump Turbine Equipped with Doubly Fed Asynchronous Machine

Abstract

The use of a Doubly Fed Asynchronous Machine (DFAM) provides attractive characteristics and offers operational flexibility in many variable speed generation applications, such as in a hydroelectric pumped storage plant. In a variable speed hydroelectric pumped storage plant, the start-up process of DFAM is identical to the conventional singly fed asynchronous machine, wherein a significant amount of energy is wasted. This paper introduces an energy-efficient start-up strategy in DFAM based hydroelectric pump-turbine. The back-to-back voltage source converter connected to the rotor side is amenable for speed control (real power), braking (regenerative/dynamic), and starting the unit. Further, in this starting technique, the stator circuit of the machine is injected with a low voltage DC supply at starting instead of short-circuiting the windings. This DC injection reduces the slip losses and cuts down the magnetizing current requirement. The magnitude of the required DC supply is estimated based on the machine’s reactive power requirement. Also, the switching of stator winding between the short circuit connection, DC injection, and grid supply is carried out using a changeover switch and determined by the speed of the rotor. The proposed starting strategy is investigated with 250 MW DFAM in Matlab/Simulink environment and experimented with a 2.2 kW DFAM prototype. Test results show that the proposed starting method can conserve more than 26.1 percent of electrical energy in the example application compared to the conventional V/f start-up strategy.

Keywords

Technology, doubly-fed asynchronous machine, T, DFAM, DC injection, energy efficient start-up, doubly-fed asynchronous machine; DFAM; hydroelectric pumped storage plant; V/f start-up strategy; energy efficient start-up; DC injection; smooth starting, V/f start-up strategy, hydroelectric pumped storage plant

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 1%
gold