
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimal Participation of Heterogeneous, RES-Based Virtual Power Plants in Energy Markets

arXiv: 2112.02200
In this work, the optimal participation of heterogeneous, Renewable Energy Source (RES)-based Virtual Power Plant (VPP) in Day-Ahead Market (DAM) and Intra-Day Market (IDM) is studied. For this purpose, a detailed model of the RES-based VPP and of the market operation is needed. The VPP includes both dispatchable and non-dispatchable RESs and flexible demand assets. This paper presents an improved, linear solar thermal plant model to consider its non-linear efficiency curve. A novel demand model with two flexibility levels that are associated with the different market sessions is also proposed. The market operation allows for updates of energy offers and this is used by the VPP to submit DAM auctions and to participate subsequently in IDM to correct for deviations. Finally, the optimal participation of the VPP in energy markets is assessed under different weather conditions.
virtual power plant, Technology, solar thermal plants, T, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, day-ahead market, flexible load, Optimization and Control (math.OC), intra-day market, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, renewable energy sources, Mathematics - Optimization and Control
virtual power plant, Technology, solar thermal plants, T, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, day-ahead market, flexible load, Optimization and Control (math.OC), intra-day market, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, renewable energy sources, Mathematics - Optimization and Control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
