
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Machine Learning for Prediction of Heat Pipe Effectiveness


Ramkumar P.

Chander Prakash

Saurav Dixit

Gunasekaran Murali

Nikolai Ivanovich Vatin

Ramkumar P.

Chander Prakash

Saurav Dixit

Gunasekaran Murali

Nikolai Ivanovich Vatin
doi: 10.3390/en15093276
This paper details the selection of machine learning models for predicting the effectiveness of a heat pipe system in a concentric tube exchanger. Heat exchanger experiments with methanol as the working fluid were conducted. The value of the angle varied from 0° to 90°, values of temperature varied from 50 °C to 70 °C, and the flow rate varied from 40 to 120 litres per min. Multiple experiments were conducted at different combinations of the input parameters and the effectiveness was measured for each trial. Multiple machine learning algorithms were taken into consideration for prediction. Experimental data were divided into subsets and the performance of the machine learning model was analysed for each of the subsets. For the overall analysis, which included all the three parameters, the random forest algorithm returned the best results with a mean average error of 1.176 and root-mean-square-error of 1.542.
- PETER THE GREAT SAINT PETERSBURG POLYTECHNIC UNIVERSITY Russian Federation
- KR Mangalam University India
- Lovely Professional University India
- Lovely Professional University India
- Uttaranchal University India
Technology, machine learning, T, heat pipe, effectiveness, exchanger
Technology, machine learning, T, heat pipe, effectiveness, exchanger
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
