Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

Machine Learning for Prediction of Heat Pipe Effectiveness

Authors: Anish Nair; orcid Ramkumar P.;
Ramkumar P.
ORCID
Harvested from ORCID Public Data File

Ramkumar P. in OpenAIRE
Sivasubramanian Mahadevan; orcid Chander Prakash;
Chander Prakash
ORCID
Harvested from ORCID Public Data File

Chander Prakash in OpenAIRE
orcid Saurav Dixit;
Saurav Dixit
ORCID
Harvested from ORCID Public Data File

Saurav Dixit in OpenAIRE
orcid Gunasekaran Murali;
Gunasekaran Murali
ORCID
Harvested from ORCID Public Data File

Gunasekaran Murali in OpenAIRE
orcid Nikolai Ivanovich Vatin;
Nikolai Ivanovich Vatin
ORCID
Harvested from ORCID Public Data File

Nikolai Ivanovich Vatin in OpenAIRE
+2 Authors

Machine Learning for Prediction of Heat Pipe Effectiveness

Abstract

This paper details the selection of machine learning models for predicting the effectiveness of a heat pipe system in a concentric tube exchanger. Heat exchanger experiments with methanol as the working fluid were conducted. The value of the angle varied from 0° to 90°, values of temperature varied from 50 °C to 70 °C, and the flow rate varied from 40 to 120 litres per min. Multiple experiments were conducted at different combinations of the input parameters and the effectiveness was measured for each trial. Multiple machine learning algorithms were taken into consideration for prediction. Experimental data were divided into subsets and the performance of the machine learning model was analysed for each of the subsets. For the overall analysis, which included all the three parameters, the random forest algorithm returned the best results with a mean average error of 1.176 and root-mean-square-error of 1.542.

Keywords

Technology, machine learning, T, heat pipe, effectiveness, exchanger

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Top 10%
gold