Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Single-Phase Voltage and Power Control Algorithm of a 4-Leg Type CVCF Inverter for an Off-Grid Micro-Grid System

Authors: Byeong-Gill Han; Ji-Myung Kim; Kyung-Hwa Kim; Jian Shen; Dae-Seok Rho;

The Single-Phase Voltage and Power Control Algorithm of a 4-Leg Type CVCF Inverter for an Off-Grid Micro-Grid System

Abstract

In general, severe load imbalances in small AC micro-grid systems can degrade their operational performance and their maintenance. This is because the unbalanced load in the micro-grid affects the energy flow and the voltage regulation functions of each phase. In order to solve the voltage imbalance problem, several algorithms for the 3-phase 4-leg CVCF inverter have been proposed, but the control algorithms are not enough to operate the 4-leg CVCF inverter in a stable manner. Therefore, this paper proposes a single-phase voltage and power control algorithm for the 3-phase 4-leg CVCF inverter based on a dq control in order to improve the voltage imbalance problem caused by a severely unbalanced load, where the single phase voltage control algorithm is composed of an αβ-dq and a dq-αβ transformer, a voltage and a current controller, and an off-set controller and a PWM, and the single-phase power control algorithm is also composed of an αβ-dq and a dq-αβ transformer, an active/reactive power and a current controller, and an off-set controller and a PWM. Additionally, this paper performs modeling of the single-phase voltage and the power controller for a 4-leg CVCF inverter using the Matlab/Simulink S/W. From the simulation results, it is confirmed that the transient stability of the proposed single voltage control algorithm can be improved compared to the conventional control algorithm, and voltage control can also be maintained in a stable manner under extremely unbalanced conditions. Further, it is confirmed that 3-phase currents of the proposed single-phase power control algorithm are controlled in a stable manner under extremely unbalanced conditions.

Keywords

Technology, T, unbalanced load, 4-leg CVCF inverter, off-grid micro-grid system, single-phase voltage control; single-phase power control; 4-leg CVCF inverter; unbalanced load; off-grid micro-grid system, single-phase voltage control, single-phase power control

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Top 10%
Average
Average
gold