Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Smart Sustainable Freight Transport for a City Multi-Floor Manufacturing Cluster: A Framework of the Energy Efficiency Monitoring of Electric Vehicle Fleet Charging

Authors: Liudmyla Davydenko; Nina Davydenko; Andrii Bosak; Alla Bosak; Agnieszka Deja; Tygran Dzhuguryan;

Smart Sustainable Freight Transport for a City Multi-Floor Manufacturing Cluster: A Framework of the Energy Efficiency Monitoring of Electric Vehicle Fleet Charging

Abstract

This study focuses on the problem of the efficient energy management of an independent fleet of freight electric vehicles (EVs) providing service to a city multi-floor manufacturing cluster (CMFMC) within a metropolis while considering the requirements of smart sustainable electromobility and the limitations of the power system. The energy efficiency monitoring system is considered an information support tool for the management process. An object-oriented formalization of monitoring information technology is proposed which has a block structure and contains three categories of classes (information acquisition, calculation algorithms, and control procedures). An example of the implementation of the class “Operation with the electrical grid” of information technology is presented. The planning of the freight EVs charging under power limits of the charging station (CS) was carried out using a situational algorithm based on a Fuzzy expert system. The situational algorithm provides for monitoring the charging of a freight EV at a charging station, taking into account the charge weight index (CWI) assigned to it. The optimization of the CS electrical load is carried out from the standpoint of minimizing electricity costs and ensuring the demand for EV charging without going beyond its limits. A computer simulation of the EV charging mode and the CS load was performed. The results of modeling the electrical grid and CS load using the proposed algorithm were compared with the results of modeling using a controlled charging algorithm with electrical grid limitations and an uncontrolled charging algorithm. The proposed approach provides a reduction in power consumption during peak hours of the electrical grid and charging of connected EVs for an on-demand state of charge (SOC).

Keywords

Technology, energy efficiency monitoring, T, city multi-floor manufacturing cluster; smart sustainable city; electric vehicle fleet; smart energy management; energy efficiency monitoring; state of charge; electrical load profile, state of charge, smart energy management, smart sustainable city, electric vehicle fleet, city multi-floor manufacturing cluster

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
gold