Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrated Life Cycle Assessment Modelling of Densified Fuel Production from Various Biomass Species

Authors: Rukayya Ibrahim Muazu; Siddharth Gadkari; Jhuma Sadhukhan;

Integrated Life Cycle Assessment Modelling of Densified Fuel Production from Various Biomass Species

Abstract

This work presents new data on the life cycle impact assessment of various lignocellulosic biomass types in Mexico. A comparative life cycle assessment model of biomass densification systems was conducted. An integrated approach that incorporated various process variables, such as technology and variations in feed properties, within the analysis was employed to evaluate the environmental impact of producing 1 MJ of energy-containing densified fuel. The results show that the densification unit and curing (fuel drying) have the highest impact on the life cycle’s operational energy and the total life cycle energy, respectively. Of all the 33 biomass types from the 17 species sources considered in this study, sweet sorghum and sandbur grass have the highest global warming potential, 0.26 and 0.24 (kg CO2-eq), and human toxicity 0.58 and 0.53 (kg 1,4-dichlorobenzene-eq), respectively, while coffee pulp and cooperi pine wood have the least impact in both categories, with values of 0.08 and 0.09 (kg CO2-eq), and 0.17 and 0.16 (kg 1,4-dichlorobenzene-eq), respectively. Chichicaxtla sawmill slabs also have a low environmental impact, and cooperi pine and Ceiba wood have the lowest ozone depletion and ecotoxicity potential. A sensitivity analysis indicated the effects of the transportation system and energy source on the life cycle’s environmental impact. Adequate feed preparation, the blending of multiple feeds in the optimum ratio, and the careful selection of densification technology could improve the environmental performance of densifying some of the low-bulk-density feed biomass types.

Related Organizations
Keywords

Technology, biomass, LCA, T, integrated modelling; LCA; densification; biomass; energy; environmental impact, environmental impact, densification, integrated modelling, energy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold