Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Primary Sludge from Dairy and Meat Processing Wastewater and Waste from Biomass Enzymatic Hydrolysis as Resources in Anaerobic Digestion and Co-Digestion Supplemented with Biodegradable Surfactants as Process Enhancers

Authors: Eriks Skripsts; Linda Mezule; Elvis Klaucans;

Primary Sludge from Dairy and Meat Processing Wastewater and Waste from Biomass Enzymatic Hydrolysis as Resources in Anaerobic Digestion and Co-Digestion Supplemented with Biodegradable Surfactants as Process Enhancers

Abstract

Incorporation of various alternative resources as co-digestion substrates aids to reduce the consumption of agricultural crops for biogas production. However, the efficiency and limitations of these co-substrates is still not fully understood. Use of biomass waste remaining after enzymatic hydrolysis for high value chemical fermentation, meat processing and dairy wastewater primary sludge as co-substrates in an agricultural resource anaerobic digestion plant is tackled within this study. The results showed that anionic surfactants (<200 ppm) can be used to improve fat, oil and grease (FOG) solubility in water and, at the same time, enhance the biomethane potential of FOG-containing sludge by increasing it from 1374.5 to 1765 mLCH4/gVS for meat processing wastewater primary sludge, and from 534 to 740 mLCH4/gVS for dairy wastewater primary sludge, when agricultural digestate is used as a substrate and sludge loading is not more than 10% from the volatile solids loaded. At the same time, only 549.7 mLCH4/gVS was produced as 30-day BMP when 5% biomass hydrolysis waste was used. Biomass hydrolysis waste co-digestion with primary sludge from dairy and meat processing wastewaters has an antigenic effect, and separate substrate anaerobic digestion gave a better results, thus, showing that excessive combination of various waste resources can be inhibitory for biogas production and the appropriate substrate selection and combination is a technical challenge for the biogas industry.

Related Organizations
Keywords

Technology, T, enzymatic hydrolysis waste, FOG, primary sludge, biodegradable surfactants, anaerobic co-digestion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold