Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Clustering Based Optimal Cluster Head Selection Using Bio-Inspired Neural Network in Energy Optimization of 6LowPAN

Authors: Mudassir Khan; A. Ilavendhan; C. Nelson Kennedy Babu; Vishal Jain; S. B. Goyal; Chaman Verma; Calin Ovidiu Safirescu; +1 Authors

Clustering Based Optimal Cluster Head Selection Using Bio-Inspired Neural Network in Energy Optimization of 6LowPAN

Abstract

The goal of today’s technological era is to make every item smart. Internet of Things (IoT) is a model shift that gives a whole new dimension to the common items and things. Wireless sensor networks, particularly Low-Power and Lossy Networks (LLNs), are essential components of IoT that has a significant influence on daily living. Routing Protocol for Low Power and Lossy Networks (RPL) has become the standard protocol for IoT and LLNs. It is not only used widely but also researched by various groups of people. The extensive use of RPL and its customization has led to demanding research and improvements. There are certain issues in the current RPL mechanism, such as an energy hole, which is a huge issue in the context of IoT. By the initiation of Grid formation across the sensor nodes, which can simplify the cluster formation, the Cluster Head (CH) selection is accomplished using fish swarm optimization (FSO). The performance of the Graph-Grid-based Convolution clustered neural network with fish swarm optimization (GG-Conv_Clus-FSO) in energy optimization of the network is compared with existing state-of-the-art protocols, and GG-Conv_Clus-FSO outperforms the existing approaches, whereby the packet delivery ratio (PDR) is enhanced by 95.14%.

Country
Hungary
Keywords

convolution clustering, RPL, Technology, grid formation, T, energy optimization, bio-inspired approach, RPL; fish swarm; bio-inspired approach; energy optimization; grid formation; convolution clustering; data transmission; cluster head; alive and dead node, fish swarm

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold