Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Solution of the Main Fan Station for Underground Mines Being Decommissioned in Terms of Reducing Energy Consumption by Ventilation

Authors: Nikodem Szlązak; Marek Korzec;

The Solution of the Main Fan Station for Underground Mines Being Decommissioned in Terms of Reducing Energy Consumption by Ventilation

Abstract

Ventilation plays a key role in underground mining. It is essential due to the natural hazards and technological processes that come with the nature of mining. However, it is highly energy consuming and generates significant operating expenditures. Fan station parameters are selected based on the needs of a particular mine but mainly consider the requirements for the period of developed mining activities. When the period of mine decommissioning begins, the parameters of the main fan station often exceed its needs. In Poland, many mines have been closed in recent years. However, sometimes, due to the necessity of pumping underground water, it cannot be done thoroughly. In such a situation, it usually turns out that the parameters of the existing fan station significantly exceed the mine’s needs. The main fan stations are devoid of control systems, and even if they have them, they do not allow for a significant reduction of their volume flow rate. Modernising of the station to meet new requirements of the mine is expensive and time consuming. Solving the presented problem is possible by developing a fan station to replace main fans that are too big. The idea is easy to implement and consists of connecting it to an existing upcast shaft or downcast shaft, which will then be changed to upcast. The solution presented in the article has been implemented in two Polish coal mines and is in progress in a third mine. The examples presented in the article clearly show the energy benefits of replacing main fans that are too large.

Keywords

main fans, air-demand reduction, Technology, mine ventilation; main fans; air-demand reduction; fan replacement; temporary fan station; energy consumption by ventilation; reducing energy consumption, T, mine ventilation, energy consumption by ventilation, fan replacement, temporary fan station

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold