Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Construction and Calibration of a Unique Hot Box Apparatus

Authors: Abdalhadi Alhawari; Phalguni Mukhopadhyaya;

Construction and Calibration of a Unique Hot Box Apparatus

Abstract

A variety of mathematical models are available to estimate the thermal performance of buildings. Nevertheless, mathematical models predict the thermal performance of buildings that might differ from the actual performance. The hot box is a widely-used test apparatus to assess the actual thermal performance of various building envelope components (walls, roofs, windows) in the laboratory. This paper presents the process of designing, constructing, and calibrating a unique small-scale hot box apparatus. Despite its smaller metering area (1.0 m × 1.0 m), this apparatus met the key requirements (below ±0.25 °C fluctuations in chambers’ air temperature, and below 2.0% variation from the point-to-point temperature in reference to the temperature difference across the specimen) as prescribed in the ASTM C1363 and ISO 8990 standards. The walls of this apparatus are uniquely constructed using vacuum insulation panels or VIPs. The efficient and novel use of VIPs and workmanship during the construction of the apparatus are demonstrated through the temperature stability within the chambers. The achieved range of temperature steadiness below ±0.05 °C and point-to-point temperature variation below 1.0% of the temperature difference across the specimen allow for this apparatus to be considered unique among the calibrated hot box categories reported in the literature. In addition, having an affordable, simple-to-operate, and high-accuracy facility offers a great opportunity for researchers and practitioners to investigate new ideas and solutions. The apparatus was calibrated using two extruded polystyrene foam (XPS) specimens with thicknesses of 2″ and 4″. The calibration exercise indicates small differences between results obtained numerically, theoretically, and experimentally (below 3.0%). Ultimately, the apparatus was employed to measure the thermal properties of a specimen representing a lightweight steel framing (LSF) wall system, which is commonly used in cold climates. The results obtained experimentally were then compared to the ones estimated numerically using a 3D finite element modelling tool. The difference between the results obtained by both methods was below 9.0%.

Related Organizations
Keywords

Technology, calibrated hot box, T, calibrated hot box; thermal performance; calibration; VIP; LSF, calibration, VIP, LSF, thermal performance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold