Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal Operation of an Integrated Hybrid Renewable Energy System with Demand-Side Management in a Rural Context

Authors: Polamarasetty P Kumar; Ramakrishna S. S. Nuvvula; Md. Alamgir Hossain; SK. A. Shezan; Vishnu Suresh; Michal Jasinski; Radomir Gono; +1 Authors

Optimal Operation of an Integrated Hybrid Renewable Energy System with Demand-Side Management in a Rural Context

Abstract

A significant portion of the Indian population lives in villages, some of which are located in grid-disconnected remote areas. The supply of electricity to these villages is not feasible or cost-effective, but an autonomous integrated hybrid renewable energy system (IHRES) could be a viable alternative. Hence, this study proposed using available renewable energy resources in the study area to provide electricity and freshwater access for five un-electrified grid-disconnected villages in the Odisha state of India. This study concentrated on three different kinds of battery technologies such as lithium-ion (Li-Ion), nickel-iron (Ni-Fe), and lead-acid (LA) along with a diesel generator to maintain an uninterrupted power supply. Six different configurations with two dispatch strategies such as load following (LF) and cycle charging (CC) were modelled using nine metaheuristic algorithms to achieve an optimally configured IHRES in the MATLAB© environment. Initially, these six configurations with LF and CC strategies were evaluated with the load demands of a low-efficiency appliance usage-based scenario, i.e., without demand-side management (DSM). Later, the optimal configuration obtained from the low-efficiency appliance usage-based scenario was further evaluated with LF and CC strategies using the load demands of medium and high-efficiency appliance usage-based scenarios, i.e., with DSM. The results showed that the Ni-Fe battery-based IHRES with LF strategy using the high-efficiency appliance usage-based scenario had a lower life cycle cost of USD 522,945 as compared to other battery-based IHRESs with LF and CC strategies, as well as other efficiency-based scenarios. As compared to the other algorithms used in the study, the suggested Salp Swarm Algorithm demonstrated its fast convergence and robustness effectiveness in determining the global best optimum values. Finally, the sensitivity analysis was performed for the proposed configuration using variable input parameters such as biomass collection rate, interest rate, and diesel prices. The interest rate fluctuations were found to have a substantial impact on the system’s performance.

Countries
Australia, Australia, Czech Republic
Keywords

Technology, Science & Technology, Energy & Fuels, off-grid; integrated renewable energy; demand-side management; optimization techniques; different batteries, off-grid, T, integrated renewable energy, optimization techniques, Electrochemical energy storage and conversion, different batteries, demand-side management

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
Green
gold