Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gearing Urban Metabolism toward the Carbon Neutrality Target: A Case Study of Hebei Province, China

Authors: Zhipeng Tang; Ziao Mei; Tao Song; Chenxinyi Yang;

Gearing Urban Metabolism toward the Carbon Neutrality Target: A Case Study of Hebei Province, China

Abstract

Urban metabolism has emerged over the past decades as an important new paradigm of regional and urban sustainability governance towards a Chinese national scheme of ‘carbon neutrality’ by 2060. Hebei province in China faces twin pressures related to its supply of water and energy resources, which has brought humans and nature into conflict. Overcoming this tension in the human-land relationship in Hebei and determining a suitable development path for the future has become a core issue for the achievement of coordinated development within the Beijing–Tianjin–Hebei region. This paper constructs a system to simulate the metabolism of water, energy, and human relationships, and uses this model to carry out simulations for Hebei province. The model establishes five scenarios: a natural development scenario, economic growth scenario, water conservation development scenario, energy conservation development scenario, and low carbon scenario. The simulation results show that, without intervention, the natural development scenario results in greater pressure on supply gaps and a greater demand for water and energy, with more production of industrial waste gas and domestic wastewater discharges. The economic growth, water conservation development, and energy conservation development scenarios focus on single economic, water conservation, and energy conservation measures by looking at core economic, water, and energy elements within the metabolic system; however, solving issues with individual elements merely leads to other, remaining problems. Under the low carbon scenario, issues with multiple elements in Hebei’s metabolic system are considered more comprehensively, so the simulation results are better than those in the other scenarios, and it better fits the future orientation of sustainable development of Hebei province.

Related Organizations
Keywords

urban metabolism, Hebei province, Technology, system dynamics model, T, sustainability, water-energy-population nexus, urban metabolism; water-energy-population nexus; system dynamics model; Hebei province; sustainability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold