
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Low-Cost I–V Tracer for PV Fault Diagnosis Using Single-Diode Model Parameters and I–V Curve Characteristics

doi: 10.3390/en15155350
The continuous health monitoring of PV modules is mandatory to maintain their high efficiency and minimize power losses due to faults or failures. In this work, a low-cost embedded tracer is developed to measure the I–V curve of a PV module in less than 0.2 s. The data are used to extract the five parameters of the single-diode model and its main characteristics (open-circuit voltage, short-circuit current, and maximum power). Experimental data are used to validate the analytical model and evaluate the two fault diagnosis methods, using as fault features the parameters of the single-diode model or the main characteristics of the I–V curve. The results, based on field data under different temperatures and irradiances, show that the degradation of series and shunt resistances could be detected more accurately with the main characteristics rather than with the parameters. However, the estimated parameters could still be used to monitor the long-term degradation effects.
- French National Centre for Scientific Research France
- Sorbonne Paris Cité France
- Université Paris-Saclay France
- University of Paris-Saclay France
- Université Paris-Saclay France
solar photovoltaic; I–V tracer; PV model; I–V curve; fault diagnosis, Technology, T, fault diagnosis, PV model, I–V curve, I–V tracer, solar photovoltaic, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
solar photovoltaic; I–V tracer; PV model; I–V curve; fault diagnosis, Technology, T, fault diagnosis, PV model, I–V curve, I–V tracer, solar photovoltaic, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
