
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Techno-Economic Analysis of a Wind-Energy-Based Charging Station for Electric Vehicles in High-Rise Buildings in Malaysia

doi: 10.3390/en15155412
Renewable energy sources have become necessary for long-term energy sustainability due to the increased demand for electric cars and worrisome rises in carbon dioxide emissions from traditional energy sources. Furthermore, transportation is one of the sectors that uses the most energy on the planet, accounting for 24% of overall consumption. Fossil fuels are still the dominant energy source for balancing global demand/supply dynamics. Supporting laws and regulations have enhanced the first phase of environmentally friendly energy-resource consumption. This has spurred the development of new solutions that cut greenhouse-gas emissions and reduce the air pollution produced by internal combustion engines that are fuelled by fossil fuels. Wind energy is one of the clean energy sources that may be utilised for this purpose. Wind energy has been used to power electric-car-charging infrastructure, generally in a hybrid mode with another renewable source. This research examines the possibility of using wind energy as a standalone energy source to support electric-vehicle-charging infrastructure. Using data from Malacca, Malaysia, and HOMER software, the project will build and optimise a standalone wind-powered charging station. An RC-5K-A wind turbine coupled to a battery and converter is the appropriate choice for the system. The findings demonstrate that the turbine can produce 214,272 kWh per year at the cost of USD 0.081/kWh, confirming wind’s future feasibility as an energy-infrastructure support source.
- Cardiff University United Kingdom
- Universiti Tenaga Nasional Malaysia
- Cardiff University United Kingdom
- UNIVERSITRY OF PERADENIYA Sri Lanka
- University of Peradeniya Sri Lanka
Technology, T, small-scale turbines, charging station; electric vehicles; high-rise buildings; small-scale turbines; techno-financial evaluation; wind energy, high-rise buildings, wind energy, charging station, techno-financial evaluation, electric vehicles
Technology, T, small-scale turbines, charging station; electric vehicles; high-rise buildings; small-scale turbines; techno-financial evaluation; wind energy, high-rise buildings, wind energy, charging station, techno-financial evaluation, electric vehicles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
