
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analysis of the Thermal Conductivity of a Bio-Based Composite Made of Hemp Shives and a Magnesium Binder

doi: 10.3390/en15155490
The evolution of bio-based composites in the building industry is strongly linked with the growing demand for sustainable development, which is relevant nowadays. Hemp shives are a large group of organic residues that are obtained in the process of oil extraction as well as straw processing. These residues could be utilized along with a binder as constituents in the manufacture of bio-based building composites. This study is focused on the impact of density and relative humidity on the effective thermal conductivity of hemp shive-based bio-composites with a magnesium binder. For this reason, a series of samples with variable densities was manufactured and subjected to conditioning in a climatic chamber at a constant temperature and different relative humidity settings. As soon as samples were stabilized, the guarded hot plate method was applied to determine their thermal conductivities. Before each measurement, great care was taken during sample preparation to ensure minimum moisture loss during long-lasting measurements. The results showed that an increase in sample density from 200 kg/m3 to 600 kg/m3 corresponded to up to a three-fold higher composite thermal conductivity. In the case of sample conditioning, a change in relative humidity from a very low value to 90% also resulted in almost 60% average higher thermal conductivity.
- Riga Technical University Latvia
- Warsaw University of Technology Poland
- "RIGAS TEHNISKA UNIVERSITATE Latvia
- Warsaw University of Technology (WUT) Poland
- Warsaw University of Technology Poland
Technology, bio-based composite, T, insulation bio-based material, hemp shive, sustainable building material, guarded hot plate method, material conditioning impact, bio-based composite; hemp shive; sustainable building material; insulation bio-based material; material conditioning impact; guarded hot plate method
Technology, bio-based composite, T, insulation bio-based material, hemp shive, sustainable building material, guarded hot plate method, material conditioning impact, bio-based composite; hemp shive; sustainable building material; insulation bio-based material; material conditioning impact; guarded hot plate method
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
