Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Review of Fault Tolerant Multi-Motor Drive Topologies for Automotive Applications

Authors: Mustapha Al Sakka; Thomas Geury; Mohamed El Baghdadi; Miguel Dhaens; Monzer Al Sakka; Omar Hegazy;

Review of Fault Tolerant Multi-Motor Drive Topologies for Automotive Applications

Abstract

With vehicle electrification and employment of X-by-wire technology, mechanical systems are being replaced by motor drives which improve the efficiency and performance of vehicular systems. However, motor drives have a lower power density and reliability compared to mechanical solutions. Multi-motor drives have the potential of mitigating both these drawbacks. In this paper, a state-of-the-art review of multi-motor drives and their application to vehicular systems is carried out. Firstly, the case of multi-motor systems in automotive applications is laid out by presenting the different vehicular systems comprising multiple motors. Secondly, multi-motor drive topologies with improved power density, reliability and fault tolerance capabilities are thoroughly analyzed. Finally, the topologies are assessed and compared in the context of automotive applications. The assessment verifies that multi-motor drives allow for fault tolerant and cost-effective solutions that are suitable for automotive applications.

Country
Belgium
Related Organizations
Keywords

X-by-wire, automotive applications, motor drives, Technology, multi-motor, inverter topologies, T, Fault tolerance, fault tolerance, multiport

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research