
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An Intelligent Data-Driven Approach for Electrical Energy Load Management Using Machine Learning Algorithms

doi: 10.3390/en15155742
Data-driven electrical energy efficiency management is the emerging trend in electrical energy forecasting and management. This fusion of data science, artificial intelligence, and electrical energy management has turned out to be the most precise and robust energy management solution. The Smart Energy Informatics Lab (SEIL) of the Indian Institute of Technology (IIT) conducted an experimental study in 2019 to collect massive data on university campus energy consumption. The comprehensive comparative study preparatory to the recommendation of the best candidate out of 24 machine learning algorithms on the SEIL dataset is presented in this work. In this research work, an exhaustive parametric and empirical comparative study is conducted on the SEIL dataset for the recommendation of the optimal machine learning algorithm. The simulation results established the findings that Bagged Trees, Fine Trees, and Medium Trees are, respectively, the best-, second-best-, and third-best-performing algorithms in terms of efficacy. On the contrary, a reverse ranking is observed in terms of efficiency. This is grounded in the fact that Bagged Trees is most effective algorithm for the said application and Medium Trees is the most efficient one. Likewise, Fine Trees has the optimum tradeoff between efficacy and efficiency.
Technology, T, SEIL dataset, artificial intelligence, data driven energy efficiency management, energy forecasting, machine learning, data driven energy efficiency management; machine learning; SEIL dataset; artificial intelligence; energy forecasting
Technology, T, SEIL dataset, artificial intelligence, data driven energy efficiency management, energy forecasting, machine learning, data driven energy efficiency management; machine learning; SEIL dataset; artificial intelligence; energy forecasting
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
