
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Review on Boiling Heat Transfer Enhancement Techniques

doi: 10.3390/en15155759
handle: 11589/254300 , 10871/131894
Boiling is considered an important mode of heat transfer (HT) enhancement and has several industrial cooling applications. Boiling has the potential to minimize energy losses from HT devices, compared with other convection or conduction modes of HT enhancement. The purpose of this review article was to analyze, discuss, and compare existing research on boiling heat transfer enhancement techniques from the last few decades. We sought to understand the effect of nucleation sites on plain and curved surfaces and on HT enhancement, to suggest future guidelines for researchers to consider. This would help both research and industry communities to determine the best surface structure and surface manufacturing technique for a particular fluid. We discuss pool boiling HT enhancement, and present conclusions and recommendations for future research.
pool boiling, Technology, nanofluids, droplets, T, 610, 620, Heat transfer enhancement; boiling; nanofluids; droplets; pool boiling, boiling, heat transfer enhancement
pool boiling, Technology, nanofluids, droplets, T, 610, 620, Heat transfer enhancement; boiling; nanofluids; droplets; pool boiling, boiling, heat transfer enhancement
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
