
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Electrification of Rural Remote Areas Using Renewable Energy Sources: Literature Review

doi: 10.3390/en15165881
The current stage of development of autonomous energy systems is characterized by a rapid increase in renewable energy sources’ installed capacity. Such growth is observed both in centralized and isolated energy systems. Renewable energy sources show high efficiency in the electrification of rural remote settlements around the world. The power of such power complexes varies from several kilowatts to tens of megawatts. When solving the problems of rural remote settlements electrification, the main issues of optimizing the composition of equipment and the structure of the energy systems play an extremely important role. Moreover, depending on the specifications of the problem being solved, criteria for evaluating efficiency are used, which are different. For example, the following are used as objective functions: minimization of the levelized cost of energy and fossil fuel consumption; maximizing the standard of people living and reliability indicators; the payback period of the project and other indicators. Various combinations of objective functions and the solution to the multi-criteria optimization problem are possible. Moreover, an important stage in the development of renewable energy in remote rural areas is the availability of new mechanisms to support an environmentally friendly generation. These mechanisms can be used in solving problems of optimizing the structure and composition of energy equipment in remote power systems. The main purpose of this article is to demonstrate the world practices of optimal design of isolated energy systems. The review includes both the main questions that arise when solving such problems, and specific problems that require a more detailed analysis of the object of study.
- National Research Irkutsk State Technical University Russian Federation
- MELENTIEV ENERGY SYSTEMS INSTITUTE OF SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES Russian Federation
- MELENTIEV ENERGY SYSTEMS INSTITUTE OF SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES Russian Federation
- National Research Irkutsk State Technical University Russian Federation
Technology, renewable energy source; autonomous photovoltaic system; optimization of installed capacities; storage batteries, optimization of installed capacities, T, renewable energy source, autonomous photovoltaic system, storage batteries
Technology, renewable energy source; autonomous photovoltaic system; optimization of installed capacities; storage batteries, optimization of installed capacities, T, renewable energy source, autonomous photovoltaic system, storage batteries
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
