Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Review on Popular Control Applications in Wind Energy Conversion System Based on Permanent Magnet Generator PMSG

Authors: Btissam Majout; Houda El Alami; Hassna Salime; Nada Zine Laabidine; Youness El Mourabit; Saad Motahhir; Manale Bouderbala; +2 Authors

A Review on Popular Control Applications in Wind Energy Conversion System Based on Permanent Magnet Generator PMSG

Abstract

There has always been a high expectation that wind generation systems would capture maximum power and integrate properly with the grid. Utilizing a wind generation system with increased management to meet the growing electricity demand is a clever way of accomplishing this. However, wind power generation systems require a sophisticated, unique, and dependable control mechanism in order to achieve stability and efficiency. To improve the operation of the wind energy conversion method, researchers are continually addressing the obstacles that presently exist. Therefore, it is necessary to know which control can improve the whole system’s performance and ensure its successful integration into the network, despite the variable conductions. This article examines wind turbine control system techniques and controller trends related to the permanent magnet synchronous generator. It presents an overview of the most popular control strategies that have been used to control the PMSG wind power conversion system. Among others, we mention nonlinear sliding mode, direct power, backstepping and predictive currents control. First, a description of each control is presented, followed by a simulation performed in the Matlab/Simulink environment to evaluate the performance of each control in terms of reference tracking, response time, stability and the quality of the signal delivered to the network under variable wind conditions. Finally, to get a clear idea of the effect of each control, this work was concluded with a comparative study of the four controls.

Keywords

Technology, backstepping control, permanent magnet synchronous generator, T, sliding mode control, predictive currents control, direct power control, wind energy conversion system

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
gold