Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detailed Analysis of PAH Formation, Toxicity and Regulated Pollutants in a Diesel Engine Running on Diesel Blends with n-Propanol, n-Butanol and n-Pentanol

Authors: Nadir Yilmaz; Francisco M. Vigil; Alpaslan Atmanli; Burl Donaldson;

Detailed Analysis of PAH Formation, Toxicity and Regulated Pollutants in a Diesel Engine Running on Diesel Blends with n-Propanol, n-Butanol and n-Pentanol

Abstract

There are a number of emissions produced by internal combustion engines that are regulated to limit atmospheric pollution. However, it is equally important for both environmental and human health to also monitor and control polycyclic aromatic hydrocarbons (PAHs). Using high-carbon alcohols with straight-chain structures, such as n-propanol (Pro), n-butanol (Bu) and n-pentanol (Pen), together with diesel fuel (D), can be a way to reduce these harmful pollutants. In this study, nine different test fuels were created by mixing each higher alcohol with diesel fuel at 5%, 20% and 30% mixing ratios. In order to compare the effects of these test fuels on regulated pollutants and PAH compounds, fuel blends were evaluated in a diesel engine at partial loads and at a constant speed. Regulated emissions were measured using a standard 5-gas analyzer, and PAHs were detected and quantified using rigorous analytical chemistry methods, such as gas chromatography–mass spectrometry (GC–MS). While higher carbon monoxide (CO) and hydrocarbon (HC) pollutants were emitted by the binary blends due to their high oxygen content and latent heat of evaporation (LHE), a decrease in nitrogen oxides (NOx) emissions between 4.98% and 20.08% was observed depending on the alcohol concentration. With the exception of the 20% n-pentanol mixture, PAH concentrations in the exhaust gas were significantly reduced in other binary blends. The 35% n-butanol mixture stood out in reducing total PAHs by 80.98%. In toxicity reduction, the 20% n-propanol mixture was the most effective with a decrease of 91.23% in toxicity. Overall, higher alcohols have been shown to be effective additives not only in reducing overall PAH emissions and toxicity, but also in reducing high-ring and heavier PAHs, which are more carcinogenic and cause a greater risk to engine lifedue to wet stacking under cold starting or low-load conditions.

Keywords

Technology, diesel engine; higher alcohol; blend ratio; regulated emissions; PAHs; wet stacking, T, wet stacking, blend ratio, PAHs, higher alcohol, regulated emissions, diesel engine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Average
Top 10%
gold