
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Probabilistic Description of the State of Charge of Batteries Used for Primary Frequency Regulation

doi: 10.3390/en15186508
handle: 11588/896000
Battery participation in the service of power system frequency regulation is universally recognized as a viable means for counteracting the dramatic impact of the increasing utilization of renewable energy sources. One of the most complex aspects, in both the planning and operation stage, is the adequate characterization of the dynamic variation of the state of charge of the battery in view of lifetime preservation as well as the adequate participation in the regulation task. Since the power system frequency, which is the input of the battery regulation service, is inherently of a stochastic nature, it is easy to argue that the most proper methodology for addressing this complex issue is that of the theory of stochastic processes. In the first part of the paper, a preliminary characterization of the power system frequency is presented by showing that with an optimal degree of approximation it can be regarded as an Ornstein–Uhlenbeck process. Some considerations for guaranteeing desirable performances of the control strategy are performed by assuming that the battery-regulating power depending on the frequency can be described by means of a Wiener process. In the second part of the paper, more realistically, the regulating power due to power system changes is described as an Ornstein–Uhlenbeck or an exponential shot noise process driven by a homogeneous Poisson process depending on the frequency response features requested of the battery. Because of that, the battery state of charge is modeled as the output of a dynamic filter having this exponential shot noise process as input and its characterization constitutes the central role for the correct characterization of the battery life. Numerical simulations are carried out for demonstrating the goodness and the applicability of the proposed probabilistic approach.
compound poisson stochastic process, primary frequency regulation, Technology, T, primary frequency regulation; battery energy storage system; Ornstein–Uhlenbeck stochastic process; compound poisson stochastic process, Ornstein–Uhlenbeck stochastic process, battery energy storage system, battery energy storage system; compound poisson stochastic process; Ornstein–Uhlenbeck stochastic process; primary frequency regulation
compound poisson stochastic process, primary frequency regulation, Technology, T, primary frequency regulation; battery energy storage system; Ornstein–Uhlenbeck stochastic process; compound poisson stochastic process, Ornstein–Uhlenbeck stochastic process, battery energy storage system, battery energy storage system; compound poisson stochastic process; Ornstein–Uhlenbeck stochastic process; primary frequency regulation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
