
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimization of Proton Exchange Membrane Electrolyzer Cell Design Using Machine Learning

doi: 10.3390/en15186657
We propose efficient multiple machine learning (ML) models using specifically polynomial and logistic regression ML methods to predict the optimal design of proton exchange membrane (PEM) electrolyzer cells. The models predict eleven different parameters of the cell components for four different input parameters such as hydrogen production rate, cathode area, anode area, and the type of cell design (e.g., single or bipolar). The models fit well as we trained multiple machine learning models on 148 samples and validated the model performance on a test set of 16 samples. The average accuracy of the classification model and the mean absolute error is 83.6% and 6.825, respectively, which indicates that the proposed technique performs very well. We also measured the hydrogen production rate using a custom-made PEM electrolyzer cell fabricated based on the predicted parameters and compared it to the simulation result. Both results are in excellent agreement and within a negligible experimental uncertainty (i.e., a mean absolute error of 0.615). Finally, optimal PEM electrolyzer cells for commercial-scaled hydrogen production rates ranging from 500 to 5000 mL/min were designed using the machine learning models. To the best of our knowledge, we are the first group to model the PEM design problem with such large parameter predictions using machine learning with those specific input parameters. This study opens the route for providing a form of technology that can greatly save the cost and time required to develop water electrolyzer cells for future hydrogen production.
- North Park University United States
- North Park University United States
- Chungbuk National University Korea (Republic of)
- Chungbuk National University Korea (Republic of)
Technology, hydrogen production, T, PEM water electrolysis, PEM water electrolysis; machine learning; cell design; hydrogen production, machine learning, cell design
Technology, hydrogen production, T, PEM water electrolysis, PEM water electrolysis; machine learning; cell design; hydrogen production, machine learning, cell design
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
