Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Review of Medium-Voltage Switchgear Fault Detection in a Condition-Based Monitoring System by Using Deep Learning

Authors: Yaseen Alsumaidaee; Chong Yaw; Siaw Koh; Sieh Tiong; Chai Chen; Kharudin Ali;

Review of Medium-Voltage Switchgear Fault Detection in a Condition-Based Monitoring System by Using Deep Learning

Abstract

In power energy distribution networks, switchgear is considered critical equipment. This is because the act of monitoring the operation and condition of switchgear, as well as performing the required corrective maintenance on any potentially problematic equipment, is critical. A single event may harm thousands of customers over time and pose a significant risk to operational staff. Many considerations must be put in place before using outages to switch down the system since they may raise maintenance costs and disrupt the power supply to users. As a result, proper interpretation of switchgear status evaluations is critical for the early identification of possible faults. Existing ultrasound condition-based monitoring (CBM) diagnostic testing techniques require the tester to manually interpret test data. This study aims to review the status of the recent development of CBM techniques with faults in switchgear. The current trend in electrification will be toward the safety and sustainability of power grid assets, which involves an evaluation of the electrical systems’ and components’ health and grids for medium-voltage distribution. This work provides a current state-of-the-art evaluation of deep learning (DL)-based smart diagnostics that were used to identify partial discharges and localize them. DL techniques are discussed and categorized, with special attention given to those sophisticated in the last five years. The key features of each method, such as fundamental approach and accuracy, are outlined and compared in depth. The benefits and drawbacks of various DL algorithms are also examined. The technological constraints that hinder sophisticated PD diagnostics from being implemented in companies are also recognized. Lastly, various remedies are suggested, as well as future research prospects.

Keywords

partial discharge, Technology, medium voltage, T, deep learning, arcing, condition-based monitoring, fault detection

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
gold