
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Sustainable Transition from Fossil Fuel to Geothermal Energy: A Multi-Level Perspective Approach

doi: 10.3390/en15197435
Indonesia is currently undergoing the energy transition from heavily fossil fuel-dependent energy to cleaner sources of energy in order to achieve its net-zero emissions by 2060. In addition to reducing fossil fuel dependency, as one of the countries with the most geothermal reserves, the optimization of geothermal energy in Indonesia could be key to facilitating the energy transition. The objective of this paper is to elaborate on the transition process, which incorporates the destabilization of fossil fuel and the growth of geothermal energy, by analyzing the impact of both exogenous and endogenous factors on the supply chain structures of both sectors. This study employs workshop involving geothermal stakeholders in Indonesia, combined with the application of the Multi-Level Perspective (MLP) framework as the theoretical lens. The study found that energy demand, environmental awareness, energy regulations, energy supply chain, and geothermal potential breakthroughs are important aspects pertinent to the MLP components, namely the socio-technical landscape, socio-technical regime and niche innovations. The socio-technical landscapes are exogenous factors that pressurize the energy sector regime allowing the niche innovation, in the form of geothermal innovation, to penetrate the fossil fuel regime, allowing it to transition to a geothermal regime. The transition pathways include several measures that could break down the fossil fuel and build up geothermal energy, through a number of schemes and incentives.
- Cranfield University United Kingdom
- Cranfield University United Kingdom
- Airlangga University Indonesia
- Coventry University United Kingdom
- Coventry University United Kingdom
Technology, T, sustainability, energy transition; geothermal energy; multi-level perspective; supply chain; sustainability, energy transition, 339, geothermal energy, multi-level perspective, supply chain
Technology, T, sustainability, energy transition; geothermal energy; multi-level perspective; supply chain; sustainability, energy transition, 339, geothermal energy, multi-level perspective, supply chain
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
