
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Design and Analysis of Three Phase Axial Flux Permanent Magnet Machine with Different PM Shapes for Electric Vehicles

doi: 10.3390/en15207533
Axial flux permanent magnet (AFPM) machines are good candidates for electric vehicle applications due to their high torque density, improved efficiency, and better flux distribution; thus, they are often used. A dual-rotor single-stator AFPM machine with four differently shaped permanent magnet (PM) rotors is investigated. The main aim of this paper is to enhance the average torque while minimizing the cogging torque and torque ripples at the expense of low PM volume. The proposed machines are analyzed in terms of flux linkage, back-EMF, cogging torque, average torque, and torque ripples. The analysis reveals that the machine with an arc-shaped PM rotor performs better than the others. In addition, the trapozoidal arc-shaped PM used in the AFPM machine outperforms the hexagonal, skew arc, and traditional trapezoidal PMs. The torque density of the trapezoidal-shaped PM machine is 40.23 (KNm/m3), while that of the hexagonal shape is 32.46 (KNm/m3), that of the skew arc shape is 39.78 (KNm/m3), and that of the arc shape is 50.38 (KNm/m3).
- King Abdulaziz University Saudi Arabia
- Centre for Renewable Energy and Power Systems Australia
- COMSATS University Islamabad Pakistan
- COMSATS University Islamabad Pakistan
- COMSATS University Islamabad
Technology, T, electromagnetic analysis, torque density, axial flux motor, 3D FEA
Technology, T, electromagnetic analysis, torque density, axial flux motor, 3D FEA
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
