
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Deep Reinforcement Learning for the Optimal Angle Control of Tracking Bifacial Photovoltaic Systems

doi: 10.3390/en15218083
An optimal tilt-angle control based on artificial intelligence (AI control) for tracking bifacial photovoltaic (BPV) systems is developed in this study, and its effectiveness and characteristics are examined by simulating a virtual system over five years. Using deep reinforcement learning (deep RL), the algorithm autonomously learns the control strategy in real time from when the system starts to operate. Even with limited deep RL input variables, such as global horizontal irradiance, time, tilt angle, and power, the proposed AI control successfully learns and achieves a 4.0–9.2% higher electrical-energy yield in high-albedo cases (0.5 and 0.8) as compared to traditional sun-tracking control; however, the energy yield of AI control is slightly lower in low-albedo cases (0.2). AI control also demonstrates a superior performance when there are seasonal changes in albedo. Moreover, AI control is robust against long-term system degradation by manipulating the database used for reward setting.
Technology, deep reinforcement learning, bifacial solar cell, T, tracking photovoltaic system, bifacial photovoltaic module
Technology, deep reinforcement learning, bifacial solar cell, T, tracking photovoltaic system, bifacial photovoltaic module
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
