Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids

Authors: Fatih Atalar; Aysel Ersoy; Pawel Rozga;

Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids

Abstract

Liquid dielectrics are different from each other, but are used to perform the same tasks in high-voltage electrical equipment, especially transformers. In similar conditions, the insulation performance of transformer oils under different types of voltage will provide dielectric resistance. In this study, three different dielectric liquids applied in transformers, namely mineral oil, natural ester and synthetic ester, were tested. Tests under AC and negative DC voltage were performed at electrode gaps of 2.5 mm, 2 mm and 1 mm using disk and VDE type electrodes as per ASTM D1816-84A and ASTM D877-87 standards, respectively. In turn, the impulse voltage tests were performed under an electrode configuration suggested by the IEC 60897 standard. The current data of 500 ms prior to breakdown under AC electrical field stress was decomposed using the empirical mode decomposition (EMD) and variational mode decomposition (VMD) methods. These analyses were conducted before the full electrical breakdown. Although synthetic ester has the highest dielectric strength under AC and negative DC electrical field stress, mineral oil has been assessed to be the most resistant liquid dielectric at lightning impulse voltages. In addition, stabilization of mineral oil under AC and negative DC voltage was also seen to be good with the help of calculated standard deviation values. However, synthetic ester has a significant advantage, especially in terms of dielectric performance, over mineral oil in spite of the stability of mineral oil. This indicates that liquid dielectric selection for transformers must be carried out as a combined evaluation of multiple parameters.

Keywords

Technology, T, electrical stress, breakdown voltage, partial discharge, dielectric liquid; transformer; breakdown voltage; partial discharge; electrical stress, transformer, dielectric liquid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Top 10%
Top 10%
gold