
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Preparation and Applications of Rare-Earth-Doped Ferroelectric Oxides

doi: 10.3390/en15228442
Ferroelectric oxides possess abundant fascinating physical functionalities, such as electro-optic, acousto-optic, and nonlinear optical characteristics, etc. However, most pristine ferroelectric oxides exhibit no efficient luminescent properties due to the indirect and wide bandgap. Rare-earth-doped phosphors demonstrate advantages such as sharp emission bandwidths, large Stokes shift, high photonstability, and low toxicity. The combination of rare-earth ions and ferroelectric oxides has shown great potential in optical sensing, lighting, solar cells, and other applications. Rare-earth-doped ferroelectric oxides exhibit efficient upconversion or downconversion luminescence in the range of ultraviolet (UV) to near-infrared (NIR) regions. In this article, the preparation process of rare-earth-doped ferroelectric oxides and the preparation methods of thin films are introduced. Their recent applications in optical sensing, lighting, and solar cells are highlighted. The review concludes with a brief summary of all related branches and discusses the potential direction of this field.
- Nankai University China (People's Republic of)
- Nankai University China (People's Republic of)
Technology, rare earth, T, ferroelectrics, thin films, upconversion luminescence
Technology, rare earth, T, ferroelectrics, thin films, upconversion luminescence
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
