Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Frequency and Voltage Control Techniques through Inverter-Interfaced Distributed Energy Resources in Microgrids: A Review

Authors: Asadi, Y; Eskandari, M; Mansouri, M; Savkin, AV; Pathan, E;

Frequency and Voltage Control Techniques through Inverter-Interfaced Distributed Energy Resources in Microgrids: A Review

Abstract

Microgrids (MG) are small-scale electric grids with local voltage control and power management systems to facilitate the high penetration and grid integration of renewable energy resources (RES). The distributed generation units (DGs), including RESs, are connected to (micro) grids through power electronics-based inverters. Therefore, new paradigms are required for voltage and frequency regulation by inverter-interfaced DGs (IIDGs). Notably, employing effective voltage and frequency regulation methods for establishing power-sharing among parallel inverters in MGs is the most critical issue. This paper provides a comprehensive study, comparison, and classification of control methods including communication-based, decentralized, and construction and compensation control techniques. The development of inverter-dominated MGs has caused limitations in employing classical control techniques due to their defective performance in handling non-linear models of IIDGs. To this end, this article reviews and illustrates advanced controllers that can deal with the challenges that are created due to the uncertain and arbitrary impedance characteristics of IIDGs in dynamics/transients.

Country
Australia
Keywords

anzsrc-for: 4009 Electronics, inverter-interfaced distributed generation, Technology, anzsrc-for: 51 Physical sciences, anzsrc-for: 40 Engineering, frequency control, autonomous operation, anzsrc-for: 4008 Electrical Engineering, 40 Engineering, 13 Climate Action, T, 621, AC microgrids, 620, anzsrc-for: 02 Physical Sciences, advanced controllers, 4009 Electronics, anzsrc-for: 33 Built environment and design, 7 Affordable and Clean Energy, impedance shaping, 4008 Electrical Engineering, Sensors and Digital Hardware, anzsrc-for: 09 Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
gold