
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach

doi: 10.3390/en15239074
A real-time energy management strategy using dynamic pricing mechanism by deploying a fractional order super twisting sliding mode controller (FOSTSMC) is proposed for correspondence between energy users and providers. This framework, which controls the energy demand of the smart grid’s users is managed by the pricing signal provided by the FOSTSMC, issued to the smart meters, and adjusts the users’ demand to remove the difference between energy demand and generation. For the implementation purpose, a scenario based in MATLAB/Simulink is constructed where a sample renewable energy–integrated smart microgrid is considered. For the validation of the framework, the results of FOSTSMC are compared with the benchmark PI controller’s response. The results of the benchmark PI controller are firstly compared in step response analysis, which is followed by the comparison in deploying in renewable energy–integrated smart grid scenario with multiple users. The results indicate that the FOSTSMC-based controller strategy outperformed the existing PI controller-based strategy in terms of overshoot, energy balance, and energy price regulation.
- Universidad de Ingeniería y Tecnología Peru
- CECOS University Pakistan
- Lahore College for Women University Pakistan
- Universidad de Ingeniería y Tecnología Peru
- Lahore College for Women University Pakistan
demand response programs, Technology, fractional order super twisting sliding mode controller; energy management; smart grid; renewable energy; demand response programs, energy management, T, smart grid, renewable energy, fractional order super twisting sliding mode controller
demand response programs, Technology, fractional order super twisting sliding mode controller; energy management; smart grid; renewable energy; demand response programs, energy management, T, smart grid, renewable energy, fractional order super twisting sliding mode controller
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
