
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Hierarchical Control Strategy for FWID-EVs Based on Multi-Agent with Consideration of Safety and Economy

doi: 10.3390/en15239112
In this study, a hierarchical chassis control strategy is designed to enhance vehicle economy and safety for four-wheel independent-drive electric vehicles (FWID-EVs). In the upper-level, a vehicle dynamics model based on multiple agents is proposed, and a distributed model predictive control (DMPC) method is designed to dimensionally solve the problem of tracking the center-of-mass torque of the demanded velocity trajectory and stability parameters. In the bottom-level, a multi-objective torque distribution strategy that weighs safety, dynamics and economy based on multi-agent theory is designed by comprehensively considering the motor efficiency and tire energy loss. Finally, a hardware-in-the-loop (HIL) simulation platform is built to verify the method formulated in this paper. The results show that the method in this paper is effective in tracking the desired trajectory and further enhancing the stability of the vehicle under various conditions. Compared with other algorithms, while guaranteeing safety and dynamics, the energy consumption of the powertrain is reduced by 9.51%.
- JILIN UNIVERSITY China (People's Republic of)
- Changchun University of Technology China (People's Republic of)
- Jilin University China (People's Republic of)
- JILIN UNIVERSITY China (People's Republic of)
- Jilin University China (People's Republic of)
Technology, energy management, T, distributed model predictive control, electric vehicles; distributed model predictive control; torque allocation; energy management, torque allocation, electric vehicles
Technology, energy management, T, distributed model predictive control, electric vehicles; distributed model predictive control; torque allocation; energy management, torque allocation, electric vehicles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
