Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Temperature-Independent Model for Estimating the Cooling Energy in Residential Homes for Pre-Cooling and Solar Pre-Cooling

Authors: Simon Heslop; Baran Yildiz; Mike Roberts; Dong Chen; Tim Lau; Shayan Naderi; Anna Bruce; +2 Authors

A Novel Temperature-Independent Model for Estimating the Cooling Energy in Residential Homes for Pre-Cooling and Solar Pre-Cooling

Abstract

Australia’s electricity networks are experiencing low demand during the day due to excessive residential solar export and high demand during the evening on days of extreme temperature due to high air conditioning use. Pre-cooling and solar pre-cooling are demand-side management strategies with the potential to address both these issues. However, there remains a lack of comprehensive studies into the potential of pre-cooling and solar pre-cooling due to a lack of data. In Australia, however, extensive datasets of household energy measurements, including consumption and generation from rooftop solar, obtained through retailer-owned smart meters and household-owned third-party monitoring devices, are now becoming available. However, models presented in the literature which could be used to simulate the cooling energy in residential homes are temperature-based, requiring indoor temperature as an input. Temperature-based models are, therefore, precluded from being able to use these newly available and extensive energy-based datasets, and there is a need for the development of new energy-based simulation tools. To address this gap, a novel data-driven model to estimate the cooling energy in residential homes is proposed. The model is temperature-independent, requiring only energy-based datasets for input. The proposed model was derived by an analysis comparing the internal free-running and air conditioned temperature data and the air conditioning data for template residential homes generated by AccuRate, a building energy simulation tool. The model is comprised of four linear equations, where their respective slope intercepts represent a thermal efficiency metric of a thermal zone in the template residential home. The model can be used to estimate the difference between the internal free-running, and air conditioned temperature, which is equivalent to the cooling energy in the thermal zone. Error testing of the model compared the difference between the estimated and AccuRate air conditioned temperature and gave average CV-RMSE and MAE values of 22% and 0.3 °C, respectively. The significance of the model is that the slope intercepts for a template home can be applied to an actual residential home with equivalent thermal efficiency, and a pre-cooling or solar pre-cooling analysis is undertaken using the model in combination with the home’s energy-based dataset. The model is, therefore, able to utilise the newly available extensive energy-based datasets for comprehensive studies on pre-cooling and solar pre-cooling of residential homes.

Country
Australia
Keywords

Technology, demand side management, T, pre-cooling, air conditioning, solar self-consumption, solar pre-cooling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold