
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Microbial Granule Technology—Prospects for Wastewater Treatment and Energy Production

doi: 10.3390/en16010075
Recent years have brought significant evolution and changes in wastewater treatment systems. New solutions are sought to improve treatment efficiency, reduce investment/operational costs, and comply with the principles of circular economy and zero waste. Microbial granules can serve as an alternative to conventional technologies. Indeed, there has been fast-growing interest in methods harnessing aerobic (AGS) and anaerobic (AnGS) granular sludge as well as microbial-bacterial granules (MBGS), as evidenced by the number of studies on the subject and commercial installations developed. The present paper identifies the strengths and weaknesses of wastewater treatment systems based on granular sludge (GS) and their potential for energy production, with a particular focus on establishing the R&D activities required for further advance of these technologies. In particular, the impact of granules on bioenergy conversion, including bio-oil recovery efficiency and biomethane/biohydrogen yields, and bioelectrochemical systems must be assessed and optimized.
waste to energy, Technology, sewage sludge, T, wastewater treatment, algal-bacterial granules, aerobic granular sludge, anaerobic granular sludge
waste to energy, Technology, sewage sludge, T, wastewater treatment, algal-bacterial granules, aerobic granular sludge, anaerobic granular sludge
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
