Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

Global Temperature and Carbon Dioxide Nexus: Evidence from a Maximum Entropy Approach

Authors: orcid Pedro Macedo;
Pedro Macedo
ORCID
Harvested from ORCID Public Data File

Pedro Macedo in OpenAIRE
orcid Mara Madaleno;
Mara Madaleno
ORCID
Harvested from ORCID Public Data File

Mara Madaleno in OpenAIRE

Global Temperature and Carbon Dioxide Nexus: Evidence from a Maximum Entropy Approach

Abstract

The connection between Earth’s global temperature and carbon dioxide (CO2) emissions is one of the highest challenges in climate change science since there is some controversy about the real impact of CO2 emissions on the increase of global temperature. This work contributes to the existing literature by analyzing the relationship between CO2 emissions and the Earth’s global temperature for 61 years, providing a recent review of the emerging literature as well. Through a statistical approach based on maximum entropy, this study supports the results of other techniques that identify a positive impact of CO2 in the increase of the Earth’s global temperature. Given the well-known difficulties in the measurement of global temperature and CO2 emissions with high precision, this statistical approach is particularly appealing around climate change science, as it allows the replication of the original time series with the subsequent construction of confidence intervals for the model parameters. To prevent future risks, besides the present urgent decrease of greenhouse gas emissions, it is necessary to stop using the planet and nature as if resources were infinite.

Keywords

Technology, maximum entropy, global temperature, T, carbon dioxide (CO<sub>2</sub>) emissions, climate change

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
gold