Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Study on Microscopic Pore Structure Classification for EOR of Low Permeability Conglomerate Reservoirs in Mahu Sag

Authors: Yong Wang; Xubin Zhao; Chuanyi Tang; Xuyang Zhang; Chunmiao Ma; Xingyu Yi; Fengqi Tan; +3 Authors

Study on Microscopic Pore Structure Classification for EOR of Low Permeability Conglomerate Reservoirs in Mahu Sag

Abstract

The microscopic pore structure controls the fluid seepage characteristics, which in turn affect the final recovery of the reservoir. The pore structures of different reservoirs vary greatly; therefore, the scientific classification of microscopic pore structures is the prerequisite for enhancing the overall oil recovery. For the low permeability conglomerate reservoir in Mahu Sag, due to the differences in the sedimentary environment and late diagenesis, various reservoir types have developed in different regions, so it is very difficult to develop the reservoir using an integrated method. To effectively solve the problem of microscopic pore structure classification, the low permeability conglomerate of the Baikouquan Formation in Well Block Ma18, Well Block Ma131, and Well Block Aihu2 are selected as the research objects. The CTS, HPMI, CMI, NMR, and digital cores are used to systematically analyze the reservoir micro pore structure characteristics, identify the differences between different reservoir types, and optimize the corresponding micro pore structure characteristic parameters for reservoir classification. The results show that the pore types of the low permeability conglomerate reservoir in the Baikouquan Formation of the Mahu Sag are mainly intragranular dissolved pores and residual intergranular pores, accounting for 93.54%, microfractures and shrinkage pores that are locally developed, accounting for 5.63%, and other pore types that are less developed, accounting for only 0.83%. On the basis of clear pore types, the conglomerate reservoir of the Baikouquan Formation is divided into four types based on the physical properties and microscopic pore structure parameters. Different reservoir types have good matching relationships with lithologies. Sandy-grain-supported conglomerate, gravelly coarse sandstone, sandy-gravelly matrix-supported conglomerate, and argillaceous-supported conglomerate correspond to type I, II, III, and IV reservoirs, respectively. From type I to type IV, the corresponding microscopic pore structure parameters show regular change characteristics, among which, porosity and permeability gradually decrease, displacement pressure and median pressure increase, maximum pore throat radius, median radius, and average capillary radius decrease, and pore structure becomes worse overall. Apparently, determining the reservoir type, clarifying its fluid migration rule, and formulating a reasonable development plan can substantially enhance the oil recovery rate of low permeability conglomerate reservoirs.

Related Organizations
Keywords

Technology, Mahu Sag, T, reservoir classification, Mahu Sag; low permeability conglomerate; EOR; reservoir classification; microscopic pore structure, low permeability conglomerate, EOR, microscopic pore structure

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
gold