
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Hygrothermal Performance Evaluation of Internally Insulated Historic Stone Building in a Cold Climate

doi: 10.3390/en16020866
In most cases, internal insulation is the only solution to improve the energy efficiency of historic buildings. However, it is one of the most challenging and complex energy efficiency measures due to changes in boundary conditions and hygrothermal behavior of the wall, particularly in cold climates. This study presents the long-term monitoring of the hygrothermal performance of an internally insulated historic stone wall building. The study aimed to assess the hygrothermal behavior of the dolomite wall if mineral wool insulation is applied internally on the north-east wall in the rooms with and without high internal moisture load. The measurements included temperature, relative humidity, water content, and heat flux. Monitoring results are compared with 1D hygrothermal simulations and a building energy consumption simulation. The in situ measurement results and hygrothermal assessment shows energy consumption decreased by 55% with relative humidity under the insulation staying belove 60% for most of the time, with short periods of increase over 80%. Energy consumption simulation shows an energy saving potential of up to 72% in the case of proper energy management.
- Riga Technical University Latvia
Technology, T, energy retrofit, energy efficiency; energy retrofit; historic building; internal insulation; DELPHIN; TRNSYS; dolomite stone; thermal performance; building energy simulation; building hygrothermal simulation, internal insulation, TRNSYS, historic building, DELPHIN, energy efficiency
Technology, T, energy retrofit, energy efficiency; energy retrofit; historic building; internal insulation; DELPHIN; TRNSYS; dolomite stone; thermal performance; building energy simulation; building hygrothermal simulation, internal insulation, TRNSYS, historic building, DELPHIN, energy efficiency
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
