
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of Dielectric Liquid Type on Partial-Discharge Inception Voltage in Oil-Wedge-Type Insulating System under AC Stress

doi: 10.3390/en16021005
Influence of Dielectric Liquid Type on Partial-Discharge Inception Voltage in Oil-Wedge-Type Insulating System under AC Stress
This article describes the results of laboratory tests on an oil-wedge-type electrode system, which were supplemented by FEM (finite element method) simulations. The studies were focused on the comparison of the partial-discharge inception voltage (PDIV) in the abovementioned system when immersed in different liquid dielectrics, namely inhibited mineral oil, uninhibited mineral oil, synthetic ester, and natural ester. In addition, the electric field stress obtained from the simulations was used in each case to determine the safe level for the actual transformer insulation. The studies were performed under AC voltage. Both electrical and optical detection methods were applied in order to properly determine the discharge inception. The statistical analysis of the results obtained from the laboratory measurements was carried out using Weibull distribution. We found that both mineral oils demonstrated better properties than the ester liquids in terms of resistance against partial-discharge appearance under the conditions of the oil-wedge-type electrode model. Therefore, for all considered cases, the inception electric field stress obtained from the FEM-based simulations corresponding to the partial-discharge inception voltage was found to be significantly higher than the commonly accepted safe design level, which is in the range of 10–12 kV/mm. This proved the good electrical strength of all liquids under test.
mineral oil, Technology, dielectric liquids; partial discharges; oil wedge; synthetic ester; natural ester; mineral oil; AC voltage, synthetic ester, T, natural ester, dielectric liquids, partial discharges, oil wedge
mineral oil, Technology, dielectric liquids; partial discharges; oil wedge; synthetic ester; natural ester; mineral oil; AC voltage, synthetic ester, T, natural ester, dielectric liquids, partial discharges, oil wedge
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
