
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Role of Non-Adiabatic Capillary Tube in Water Cooler Performance

doi: 10.3390/en16031322
In this paper, a numerical model of a capillary tube is developed. The considered expansion device is placed against the suction line at the inlet of the compressor. Wrapping the capillary tube around the suction line allows heat to be recovered by superheating the refrigerant leaving the evaporator. This increases the degree to which the fluid is superheated, preventing liquid droplets from entering the compressor and causing damage. The open-source software PYTHON is used for modelling the non adiabatic capillary tube, and the results are validated by comparing them with experimental tests. This study demonstrates that an accurate contact of the capillary tube with the suction line affects the superheating of the compressor inlet fluid by increasing its temperature by up to 5 degrees and produces an increase in COP of 3–4%. On the other hand, the length of the capillary tube affects the flow rate of the refrigerant circulating in the cycle; in particular, it is noted that a 300% increase in the capillary tube length leads to a decrease in the refrigerant flow rate of up to 50–60%.
- National Research Council Italy
- Marche Polytechnic University Italy
- KU Leuven Belgium
- Construction Technologies Institute Italy
Technology, refrigeration, capillary tube, T, heat exchanger
Technology, refrigeration, capillary tube, T, heat exchanger
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
