
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Exploring the PV Power Forecasting at Building Façades Using Gradient Boosting Methods

doi: 10.3390/en16031495
handle: 20.500.14352/103514
Solar power forecasting is of high interest in managing any power system based on solar energy. In the case of photovoltaic (PV) systems, and building integrated PV (BIPV) in particular, it may help to better operate the power grid and to manage the power load and storage. Power forecasting directly based on PV time series has some advantages over solar irradiance forecasting first and PV power modeling afterwards. In this paper, the power forecasting for BIPV systems in a vertical façade is studied using machine learning algorithms based on decision trees. The forecasting scheme employs the skforecast library from the Python environment, which facilitates the implementation of different schemes for both deterministic and probabilistic forecasting applications. Firstly, deterministic forecasting of hourly BIPV power was performed with XGBoost and Random Forest algorithms for different cases, showing an improvement in forecasting accuracy when some exogenous variables were used. Secondly, probabilistic forecasting was performed with XGBoost combined with the Bootstrap method. The results of this paper show the capabilities of Random Forest and gradient boosting algorithms, such as XGBoost, to work as regressors in time series forecasting of BIPV power. Mean absolute error in the deterministic forecast, using the most influencing exogenous variables, were around 40% and close below 30% for the south and east array, respectively.
Technology, gradient boosting algorithms, Física de materiales, T, Gradient boosting algorithms, BIPV, 620.92, machine learning, 2212.03 Energía (Física), Machine learning, Física (Química), 728.036, PV power forecasting
Technology, gradient boosting algorithms, Física de materiales, T, Gradient boosting algorithms, BIPV, 620.92, machine learning, 2212.03 Energía (Física), Machine learning, Física (Química), 728.036, PV power forecasting
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
